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Abstract 

The bridge between the molecular descriptions of 
crystalline configurations and the continuum theories 
of crystal mechanics such as linear and nonlinear 
elasticity is given by a natural hypothesis that goes 
back to Cauchy and Born, referred to as the 'Born rule'. 
This paper reports on an extensive investigation on the 
validity of the Born rule and the possibility of applying 
nonlinear elasticity to describe the behavior of crystal- 
line solids. This is done by studying the phenomenon of 
mechanical twinning and its implications for the 
invariance group of the energy density of the crystal. 
The analysis leads to the conclusion that, in the 
'generic' case, the Born rule does not hold and that 
nonlinear elasticity theory cannot provide an adequate 
model for crystal mechanics because an unphysical 
energy invariance is derived. However, the Born rule 
works and elasticity theory can be used for crystals 
whose twinning shears satisfy certain quite restrictive 
'nongeneric' conditions. Relevant experimental data 
confirm these theoretical negative conclusions. It is 
remarkable that two very important classes of 'non- 
generic' materials to which an elastic model safely 
applies do emerge experimentally: shape-memory 
alloys and materials whose crystalline structure is 
given by a simple Bravais lattice. 

1. Introduction. Motivation and results 

Linear elastic theories have been successfully used for a 
long time for modeling various aspects of the behavior 
of crystalline solids, and the molecular theories of 
elasticity provide a way to ascertain the properties of the 
energy density of crystals considered as continua. In 
order to do so, a way of relating the macroscopic 
deformation to the changes in atomic arrangements is 
needed. Cauchy (1828, 1829) put forward the hypoth- 
esis that the atomic motion agrees with the gross 
deformation; Born (1915), who appreciated that this is 
not always the case, modified Cauchy's hypothesis and 
made the physically natural assumption that only the 
skeletal structure of the crystalline lattice is embedded 
in the macroscopic deformation, while the microstruc- 
tural 'motif' is free to adjust so as to reach equilibrium 
(see also Born & Huang, 1954). This has become the 

standard assumption in the molecular theories of 
elasticity, not only linear, and is often referred to as 
the 'Born rule' [see also Love (1944), Ericksen (1984) 
and Stakgold (1950) for critical presentations and 
historical remarks]. 

In more recent years, there has also been a quite 
successful effort to adopt nonlinear elasticity theory, 
based on molecular considerations, for modeling the 
behavior of crystals in the range of finite deformations, 
such as those encountered in mechanical twinning or in 
symmetry-breaking diffusionless phase transitions. The 
latter typically lead to the formation of coherent 
microstructures in which the phase variants are mixed 
in a great variety of configurations and these effects are 
important for the understanding of the macroscopic 
behavior of materials, which can make them very 
interesting also from the point of view of applications. 
For instance, certain alloys exhibit shape-memory 
properties as a consequence of the ability of the material 
to form, in response to the imposed boundary conditions 
such as given loads or deformations, an array of self- 
accommodating equilibrium phase mixtures involving 
periodic twinned microstructures. 

The nonlinear elastic model for phase transitions 
and twinning in crystals originated in the work of 
Ericksen (1977, 1980, 1984, 1987, 1989); heutilized 
the Cauchy-Born hypothesis in order to obtain from 
the molecular theories some new invariance properties 
for the energy function used in the classical frame- 
work for phase transitions by Landau (see, for 
instance, Landau, 1965). The Cauchy-Born-Ericksen 
route to elasticity leads to a global energy invariance, 
which is described by a group conjugate to the infinite 
discrete group of 3 x 3 invertible matrices with 
integral entries. This group has several unusual 
features: for instance, it contains nonorthogonal 
transformations, the role of which is of importance 
for describing mechanical twinning in the context of 
elasticity theory (Ericksen, 1987). This point of view 
is, of course, quite different from the traditional one 
adopted in classical linear and nonlinear theories, 
according to which the energy invariance is given by 
the crystallographic point group describing the geo- 
metrical symmetry of the crystalline lattice (see 
Truesdell & Noll, 1965). A reconciliation of the two 
positions is given by Pitteri (1984, 1985b). 
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Ericksen's approach renders elasticity theory flexible 
enough to encompass the phenomena above, which lay 
for long outside its range. This has led in recent times to 
an increasing bulk of literature especially aimed at the 
understanding and prediction of microstructure forma- 
tion during phase transitions; see, for instance, the 
works by Ball & James (1987, 1992), Bhattacharya 
(1991, 1992), Bhattacharya & Kohn (1996), Chu & 
James (1995), Ericksen (1980, 1986, 1987, 1989, 1991, 
1993, 1996), Gurtin (1983), James (1981, 1992), James 
& Kinderlehrer (1989), Kinderlehrer (1988), Luskin 
(1966), Pitted (1985a, 1986, 1990), Pitteri & Zanzotto 
(1996a,b), Simha & Truskinovsky (1996) and Zanzotto 
(1988, 1992, 1996). 

However, Zanzotto (1988) notes that the procedure to 
obtain an elastic model outlined above often may not be 
viable because in various cases, especially (but not only) 
involving twifining deformations in a variety of crystals, 
the Born rule is not in agreement with observations. 

Here we briefly report the results of a careful 
investigation regarding the validity of the rule and the 
actual extent of applicability of nonlinear elasticity in 
crystal mechanics (see Zanzotto, 1992). While we refer 
to the latter work for more details, here we show the 
essential effects in a general energy setting. 

A consequence of the fact that the Born rule does not 
always hold is that we are left without any definite way 
to connect the molecular and macroscopic continuum 
pictures. Yet such a definite connection between the two 
descriptions is clearly necessary for having a useful 
continuum model capable of theoretical predictions 
regarding for instance twin or phase boundaries, 
microstructures etc. This suggests that some of the 
above-mentioned ideas regarding the macroscopic 
material symmetry of elastic crystals need to be 
reconsidered. Indeed, without a hypothesis like Born's, 
it is unclear how to assess from molecular arguments 
any features of the energy invariance group G and, with 
the lack of a connection between the atomic positions to 
the gross deformation of the macroscopic body, it is 
even difficult to judge a priori whether, and how, 
elasticity theory might be adopted at all for such 
materials. 

The situation is clarified by studying two questions: 
the first problem is to establish in which cases the Born 
rule can hold for a crystal, at least in twinning; the 
second one is to investigate the possibility of a purely 
macroscopic elastic approach to crystal mechanics in 
which the theory is developed independently of the 
Cauchy-Born hypothesis when the rule itself does not 
hold. 

To address these two issues, in this work we 
tentatively take the point of view of nonlinear 
elasticity, but on the energy-invariance group G we 
only make the physically reasonable assumptions that 
are standard i n  continuum mechanics, with no 
hypotheses especially tailored to suit crystalline 

substances. We then obtain interesting information 
about G directly from experimental data on twinning. 
To do so, following the consensus among mineral- 
ogists and metallurgists, we regard a mechanical 
twinning mode as a particular configuration of stable 
equilibrium for a crystalline body (see, for example, 
Ericksen, 1987). This is shown to produce a general- 
ized reflection in the group G, which can be 
calculated on the basis of the standard data available 
from twin observations. Twinning thus has definite 
implications regarding the invariance of the energy 
functions of crystals, and here we indicate some main 
consequences of this fact. 

We notice that this operates a reversal of the 
perspective adopted in the literature: indeed, we do 
not obtain the energy-invariance group G from the 
molecular theories via the Cauchy-Born hypothesis and 
use this to calculate the twinning equilibria, checking 
thereafter whether the theoretical results match the 
observed modes. On the contrary, we take direct 
advantage of the experimental data on twins and gather 
information about the invariance group G by studying 
the elements of G that can be computed explicitly from 
experimentally observed twinning modes. When a 
number of twins are known for a material, a whole 
'twinning (sub)group' of G can be determined and its 
properties investigated. 

The conclusion is that, 'generically', the Born rule 
does not apply to twinning deformations, in that the 
twinning subgroups are not consistent with the discrete 
groups that the rule implies. Indeed, in the generic case, 
the twinning subgroups exhibit features that are in 
contrast with most of the common ideas associated with 
crystalline behavior. For instance, non-isolated energy 
minimizers, as for transversely isotropic materials, turn 
out to be rather the rule than the exception. In some 
cases, the groups turn out to be high-dimensional 
continuous groups, possibly forcing G to coincide with 
the whole unimodular group (the group of matrices with 
determinant + l ) ,  implying for the material an absurd 
fluid-like behavior. This makes it quite clear that in 
these generic cases an elastic approach definitely proves 
inadequate. An equilibrium theory suitable for crystals 
in these circumstances has recently been developed by 
Ericksen (1996). 

Although the class of nongeneric twinning groups, 
generated by the particular twins for which the Born 
rule does hold (at least in a weaker sense), is 
theoretically very special, it turns out to have great 
experimental relevance: a number of remarkable 
materials in fact exhibit nongeneric behavior. They 
are essentially of two types: crystals whose structure is 
described by one simple Bravais lattice and shape- 
memory alloys; for all of them, we were unable to find 
any evidence of failure of the rule when suitable lattice 
vectors were chosen and a nonlinear elastic model 
safely applies. 
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To conclude, our analysis answers in a rather 
complete way the questions posed above; it turns out 
that an elastic model for crystals can be formulated only 
when the Born rule holds so that its fundamental role in 
crystal mechanics is clearly made evident. We also give 
explicit conditions for the validity of the rule, setting in 
this way some definite boundaries to the range of 
applicability of elastic theories for crystals. 

2. Crystal  elasticity 

2.1. Lattice configurations 

A description of the configurations of a crystalline 
lattice can be given, in general, by means of a 
'multilattice', that is, by means of a number of 
interpenetrating simple Bravais lattices whose points 
are given by 

x : ~ M a e a  W Pk, (1) 
a 

with M a integers, a = 1, 2, 3. In (1), e a are suitable 
linearly independent 'lattice vectors' and Pk are 'shift' 
vectors, with k ranging from 0 to some integer N (see, 
for instance, Engel, 1986; Pitteri, 1985b). The vectors 
Pk can be interpreted as describing the microstructural 
'motif  in the crystalline lattice. 

2.2. Lattice energy 

Granted (1), the free-energy density of the lattice per 
unit volume, ¢p say, is obtained in molecular theories as 
a function of the lattice vectors e a, of the shifts Pk and of 
the temperature 0, 

¢P - -  ¢P(ea, Pk, 0),  (2)  

where all the arguments vary within some appropriate 
domain. We assume, as usual, that the function in (1) is 
smooth enough. 

2.3. Born rule 

A macroscopic, phenomenological, theory, such as 
thermoelasticity theory, is brought into the picture by 
connecting the molecular description to the continuum 
one. As discussed in §1, this is done by means of the 
Born rule, which is utilized, explicitly or implicitly, in 
all the literature we know. 

In order to state the rule, let any reference 
configuration R be chosen for the crystalline body 
viewed as a continuum, the position of whose points are 
described by the variable position vector x. We assume 
R is a bounded region of the Euclidean 3-space. The 
macroscopic deformation of R is given by an invertible 
function y - - y ( x ) ,  which, in a system of rectangular 
Cartesian coordinates, is given by Yi = Yi(Xr) 
(i, r -- 1, 2, 3). This maps the point x to its new position 
y and thus maps R onto another region in space giving 
the deformed shape of the body. For physical reasons, 

the deformations are considered to be continuous, 
piecewise differentiable and orientation preserving. 
The deformation gradient F = Dy, which is a matrix 
whose entries are Fir = Oyi/Ox r, is thus assumed to have 
positive determinant: det(Fir)> 0 (see, for instance, 
Truesdell & Noll, 1965). Furthermore, we assume that 
the crystalline lattice in the reference configuration R is 
generated by 'reference' lattice v e c t o r s  E a. 

Suppose now that the macroscopic body in the 
configuration R experiences a homogeneous deforma- 
tion with gradient F. The Born rule states that the lattice 
vectors behave as material  vectors, i.e. that they are 
'embedded' in the .macroscopic deformation. Precisely, 
according to the Born rule, the vectors ca, defined by 

e a : ~'~Ea, a =  1,2,3,  (3)  

are assumed to constitute a set of possible lattice vectors 
for the crystal in the deformed configuration (Born & 
Huang, 1954; Ericksen, 1984; Stakgold, 1950). No 
analogous assumptions are made regarding the evolu- 
tion of the internal variables Pk. For instance, Born 
assumed that the microstructural motif would not evolve 
according to a kinematical rule such as (3) but by 
solving equations that depend on the material, so as to 
reach an equilibrium configuration in the deformed 
crystal. This means that the vectors Pk may be 
'minimized out' of the energy function to obtain the 
free energy ~o of the lattice as a (possibly multivalued) 
function of the sole lattice vectors e a (see, for instance, 
Ericksen, 1980, 1982). We will not need to do so here 
and indeed can avoid making any specific hypothesis on 
the behavior of Pk. 

2.4. Continuum energy 

By using the Born rule, one obtains from the 
molecular constitutive function in (2) a constitutive 
function ~ for the free-energy density of the crystal 
viewed as a macroscopic continuum; this is done by 
means of the definition 

q~(F, Pk, 0) - -  ~0(FE a, Pk, (9) - -  go(e a, Pk, 0), (4)  

where the reference lattice vectors E a are held fixed. 
Except for the presence of the 'internal variables' Pk, 
the constitutive function in (4) gives an energy that 
depends on the macroscopic deformation gradient, 
suitable for a nonlinear elastic model. As usual, it is 
then possible to introduce the free-energy functional of 
the unloaded body: 

¢[y] = f ¢(Dy(x))dx, (5) 
R 

where the internal variables and the temperature are 
omitted for brevity. The minimizers of (5) at a given 
temperature are the stable stress-free equilibria of the 
crystal. 
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2.5. Energy invariance; discussion 

The invariance properties of the free-energy function 
are the central ingredient by means of which the 

notion that the material is 'crystalline' is introduced in 
the theory. Ericksen (1977, 1980, 1989) proposed to 
obtain the invariance of ff suitable for describing 
crystalline behavior by deriving it from the invariance 
of the lattice-energy function ~o [the invariance proper- 
ties of ~p in (2) for a multilattice (1) are given by Pitteri 
(1985b)'; see also Pitteri & Zanzotto (1996a)]. This 
proposal by Ericksen is based on the validity of the rule 
(3) and it leads to an invariance for ~ described by a 
group conjugate to the infinite discrete group of 3 x3 
matrices with integral entries and unimodular deter- 
minant. As mentioned above, this point of view, used in 
the elastostatic variational calculations based on the 
functional (5), makes it possible to model phenomena 
such as transformation twinning and the formation of 
fine twinned microstructures in crystals undergoing 
solid-to-solid phase transitions (see the literature quoted 
in §1). 

However, here we do not follow this train of thought 
regarding the invariance properties of ~. The reason is 
that the Born rule is observed not to hold on a number of 
occasions, especially in mechanical twinning deforma- 
tions (see §3.4). Our aim here is to test the validity of 
the rule and check whether and to what extent elasticity 
theory can be applied to model crystal mechanics. 

Consequently, here we only accept the hypothesis 
that a macroscopic free-energy function such as (4) can 
be written for the crystalline body but do not make any a 
priori assumptions regarding its invariance properties. 
We only assume for ff the physically reasonable 
standard invariance requirements (i) and (ii) - see §2.6 
below - made for any strain-dependent constitutive 
function in a continuum theory (see Truesdell & Noll, 
1965). In the next sections, we investigate the 
consequences of twinning on the invariance group of 
~. Also, we do not assume the validity of the Born rule 
(3) and actually seek to determine when it holds for 
twinning deformations. 

Remark. It will become clear that, for the purposes of 
investigating the main implications of twinning about 
the invariance of if, it is enough to consider the 
dependence and invariance of ~ with respect to its 
argument F only, disregarding the shifts Pk and the 
temperature 0. Thus from now on we will drop the latter 
variables from all formulas. 

2.6. Energy invariance; assumptions 

(i) The constitutive function ff is assumed to be 
Galilean invariant, that is, it must be invariant under 
rigid-body motions; this means that it must satisfy 

~(F) = ~0RF) (6) 

for any orthogonal transformation R and any deforma- 
tion gradient F. 

(ii) We also assume, as usual in continuum 
mechanics, that there is a 'material symmetry group' 
G of unimodular matrices H describing the invariance 
of the response function ~ under changes of the 
reference configuration for the body. Explicitly, we 
assume that 

~ff') = ~(n-I) (7) 

for any tensor F and any H~G. The specific choice 
of G contributes to the characterization, in the 
mathematical model, o f  the physical properties of 
the material. Here we assume that the point group of 
the crystal is contained in G. The full invariance of 
in its argument F is hence summarized by the 
condition 

~fr) = ~(Rrn) ,  (8) 

which must hold for any H in G, any orthogonal 
transformation R, and any deformation gradient F 
within an appropriate domain. Deformation gradients 
F~ and F 2 such that 

F 2 ---- RF 1H (9) 

for some orthogonal R and some H in G are called 
'symmetry related'. 

3. Mechanical twinning 

To proceed, we must study in some detail the 
mechanical-twinning deformations of crystals, whose 
physical characteristics, as described for instance by 
Cahn (1954), Kelly & Groves (1970) and Klassen- 
Neldiudova (1964), are modeled here following 
Ericksen (1981, 1987), Pitted (1985a), James 
(1981), Gurtin (1983) and Pitteri & Zanzotto (1996). 

3.1. Mechanical twins as stable equilibria for a crystal 

In elasticity theory, mechanical twins are considered 
as pairwise homogeneous stress-free stable equilibrium 
states of an unloaded crystal. Twinning is thus regarded 
as a continuous deformation y of the reference 
configuration R such that: (a) y minimizes the functional 
(5) for fixed temperature; (b) y is continuous and 
'pairwise homogeneous', i.e. it is specified by constant 
deformation gradients F~ and F 2 defined on two 
complementary subregions R1 and R 2 of R, meeting 
along a plane in R with normal N, say. The plane in the 
deformed configuration whose normal is n = F i N  is 
called the 'composition plane' or 'twin interface'. 

In order for (a) and (b) to be verified (away from 
phase transitions), F t and F 2 must both be symmetry- 
related minimizers of the energy function ~ of the 
crystal [see (9)] and, as a consequence of the well 
known Hadamard compatibility conditions for the 
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continuity of y (see, for instance, TruesdeU & Noll, 
1965), they must also satisfy the following 'twinning 
equation': 

F 2 " -  QF1H = (1 + a ® n)F  l, (10) 

where a and n are suitable vectors, Q is a suitable 
orthogonal transformation not in the point group of the 
crystal and H is a suitable element of the invariance 
group G of the energy ~3: 

H ~ G .  (11) 

In (10), the symbol ® denotes the dyadic or tensor 
product of vectors, which is a matrix whose compo- 
nents, in rectangular Cartesian coordinates, are 
(a ® n)i r "---ain r. Since de tF  1 and de tF  2 in (10) have 
the same sign, so must det H and det Q, and this implies 
det(1 + a ® n) = 1; therefore, in (10) we have 

n . a = 0 ,  sothat  S = l + a ® n  (12) 

is necessarily a simple shear, called the 'twinning 
shear'. The orthogonal transformation Q appearing in 
(10) is called the 'twinning operation'. 

3.2. Implications of twinning regarding the energy 
invariance 

Away from phase transitions, it is assumed that the 
minimizers for the constitutive function ~ are only those 
dictated by the energy invariance (9). Thus, the 
condition that in (10) the tensor H be an element of 
the group G is necessary to guarantee that the twinning 
deformation y defined by the two gradients F 1 and F 2 in 
(10) be a minimizer of the functional (5), i.e. that it 
gives a stable equilibrium state for the body under zero 
loads. Indeed, y minimizes (5) only if both F 1 and F 2 
are minimizers of the free-energy density ~ and, under 
our hypothesis for ~3, by (8) if the tensor F 1 is a 
minimizer of if, the tensor F 2 = QFII-I in (10) is also a 
minimizer of ~3 only if H ~ G. Thus, in order to have a 
mechanical twin, the twinning equation (10) must be 
satisfied with (11). 

From our point of view, this is the central observation 
because it means that to any twinning mode of a crystal 
can be associated an element H of its energy-invariance 
group G: such H can be calculated explicitly when the 
usual data on twinning modes are known [see (14) and 
(15) below]. 

3.3. Type 1 and type 2 twins 

Let us confine our attention to the geometrically 
simplest tWinS, i.e. type 1 and type 2 twins,* which 

* Zanzotto (1988) notices that there are in the literature two different 
definitions of type 1 and type 2 twins, which are not equivalent. One 
definition refers to certain properties of rationality of some elements of 
the twinning shear, the other is the one given in the text, which we 
follow. 

appear to be the only ones to have been experimentally 
observed without doubt (Zanzotto, 1988, 1992). These 
twins constitute the class of solutions to (10) that are 
best understood: for them, it is always possible to 
choose the twinning operation Q in (10) to be the mirror 
symmetry about the planes with normals n or a, that is, 

Qn = 1 - 2 ( n -  n)-mn ® n, 
(13) 

Qa - 1 - 2(a.  a ) - l a  ® a, 

respectively, for type 1 and type 2 twins. It is well 
known that, if the motif of the crystalline structure is not 
taken into account, a type 1 twin can be equivalently 
described by means of a twinning operation that is a 
180 ° rotation about the axis n normal to the composition 
plane (see Fig. 1); this is often used in the literature as a 

/ 

\ 
7 

(a) 

i 
(b) 

Fig. 1. • Actual positions of the lattice points in the twinned 
individuals, o Lattice points before shearing. (3 Lattice points after 
shearing according to the macroscopic twinning shear. Two 
schematized twinning modes of type 1 are shown. Notice that in 
(b) the Born rule [equation (3)] does not hold stricto sensu because 
the sheared lattice vectors are not lattice vectors for the twinned 
lattice (the twinning shear only restores a sublattice in mirror 
symmetry; additional shuffle movements of the atoms are needed to 
reconstruct the whole lattice in a twinned configuration; see also 
§3.4). Condition (18) holds for these two twinning shears. 
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definition of type 1 twins. In what follows, we mostly 
consider type 1 twins, which are predominant in the 
observations. 

3.4. Failures of the Born rule 

The shear S [in (10)] is always experimentally 
observed in connection with mechanical twinning 
(Cahn, 1954) and often it is explicitly measured. 
Suppose, as is usually done in the experimental 
literature, that the reference lattice vectors E a are 
those giving one of the individuals of the twin. Fig. 1 
shows schematically the effect of two type 1 twinning 
deformations on a crystalline lattice. The Born rule 
holds for the shear S of the twin in Fig. 1 (a): the portion 
of the lattice on one side of the contact plane is left 
undeformed, while on the other side the twinning shear 
produces lattice v e c t o r s  S E  a that generate the twinned 
lattice as dictated by (3), related to the original lattice by 
the orthogonal twinning operation Qn. 

Now, while in Fig. l(a) the twinning shear restores 
the whole lattice in mirror symmetry, it is known 
(Cahn, 1954) that in several materials the restoration of 
a sublattice suffices, so that in a mechanical twin a 
fraction of the lattice points must undergo inhomoge- 
neous shuffling in order to reach the correct positions in 
the twinned lattice. Fig. l ( b )  illustrates one such 
twinning mode. Zanzotto (1988) observed that in this 
case the Born rule (3) does not hold stricto sensu 
because the sheared lattice v e c t o r s  S E  a do not generate 
the twinned lattice. Thus, in spite of its widespread and 
very common use, the validity of the Born rule for 
crystalline substances should not be taken for granted. 
We will return later to the consequences of this 
phenomenon regarding the invariance of the energy 
function of the crystal. 

3.5. Explicit computation of some elements of the 
invariance group G 

In the case of type 1 twins, there is a rapid way of 
computing explicitly the matrix H 6 G connected to a 
twinning mode experimentally observed in a given 
crystal. To this end, we consider, as is usual in the 

SHEAR DIRECTION, r/1 
K 2 BEFORE A ~J K 2 AFTER 

SI-tEAR--~ X / ~  SHEAR 

/ ~  r/\ / ? /  PLANE OF 
2 \ \  / SHEAR 

. . . . . .  

__/ 1/i 

Fig. 2. The elements K 1, K 2, 01, 02, introduced in §3.5 for a shear 
S = l + a ® n .  

mineralogical and metallurgical literature, the 
'elements' K 1, K2, 0x and 02of  the twinning shear S; 
the twin interface, normal to n, is the 'invariant plane' 
of the shear, denoted by K1; K 2 is the 'second 
undistorted plane', i.e. the unique plane that is only 
rotated by S; S is the ' p l aneof  shear' containing a and 
n; 01 is the 'shear direction', parallel to a; 02 is the 
oriented intersection of S and K 2 (see Fig. 2). 

A shear is determined by either couple, (K 1, 02) or 
(K2, 01), of its elements, and in the literature the 
macroscopic shear S is always given by means of the 
crystallographic indices of such elements; for instance, 
the indices ( g l i )  and [0~] of K 1 and 02 are given for type 
1 twins. Tables reporting experimental data for K 1 and 
02 for many twins in different materials can be found in 
various metallurgy and mineralogy textbooks [see, for 
instance, Kelly & Groves (1970) and Klassen-Nekliu- 
dova (1964); see also §5]. 

Now, it is possible to utilize such data to calculate the 
element H connected to an observed twinby  means of 
the following formulas: 

H=l-2(112.K1)-I112®K1, 112"K1¢0, (14) 
where 

_._ i 112 02Ei and K 1 = KliEi; (15) 

here, (Kli) and [0~] are the indices of the shear elements 
K1 and 02 and the lattice vectors E i of the unsheared 
individual of the twin are chosen as reference lattice 
vectors (E / denotes the dual or reciprocal-lattice 
vectors). The expressions (14) and (15) for H are 
obtained by making the definition of K 1 and 02 explicit 
in terms of the shear vectors a and n, and by 
considering the twinning equation (10) for a type 1 
twin with the reference configuration chosen above, that 
is, when in (10) we set F 1 = 1 and Q = Q, [see (13)]. 

An analysis of the twinning equation actually shows 
that even for type 2 twins the element H can be cal- 
culated in a similar way by exchanging K z and 01 for K 1 
and 02 in (14) and (15) (Zanzotto, 1992). We recall that 
the shears of type 2 twins are always given in the ex- 
perimental literature in terms of their elements K z and 01. 

3.6. Twin-connected generalized reflections in the 
group G 

It can be easily verified that the elements I-I connected 
to type 1 and type 2 twins, given by (14) and (15), are 
(nonorthogonal) 'generalized reflections' in the sense of 
Bourbaki (1981, p. 67), that is, they are matrices H 
such that H 2 -  1 and H -  1 has rank 1. This means 
that, given a crystalline material of which some 
twinning modes are known, it is possible to calculate 
explicitly a number of generalized reflections belonging 
to the invariance group G of its energy ~. Such 
generalized reflections generate groups whose proper- 
ties are investigated in the literature on group theory. 
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4. Properties of the invariance group of the energy 
when twinning is observed. Validity of the Born rule 

and conditions to apply elasticity theory 

411. Twinning subgroups of G 

According to the discussion in §§3.4 and 3.5, let us 
assume that, for a given crystal whose energy ~b has an 
invariance group G, a number of twinning modes of 
type 1 or type 2 are known and that, consequently, also 
a finite number of 'twin-connected' generalized reflec- 
tions I-I~ 6 G, ct = 1 . . . . .  n, have been determined. The 
twin-connected I-I~ generate a 'twinning subgroup', H 
say, of G. 

4.2. Twinning subgroups and validity of the Born rule 

By using (3), (10), (14) and (15), it is not hard to 
check the following properties of the twinning subgroup 
H of G: 

(i) The group H is, in general, constituted by 
invertible 3 x 3 matrices with rational entries. This 
follows from the fact, mentioned in §3.4, that, in any 
twinning deformation observed experimentally, at least 
a sublattice is restored in mirror symmetry by the 
twinning shear. 

(ii) The Born rule (3) holds stricto sensu, that is, all 
the twinning shears restore the whole lattice in mirror 
symmetry if and only if the group H is constituted by 
invertible 3 x 3 matrices with integral entries. When 
the Born rule holds, it is possible to apply the Cauchy- 
Born-Ericksen procedure discussed in §1 and consider 
an elastic model for the crystal. The invari~ince group G 
of the energy proposed by Ericksen as mentioned in §2.5 
is a discrete group that physically describes well the 
properties of the crystal and contains the twinning group 
H in a natural way. 

(iii) If the Born rule (3) does not hold, there is still the 
possibility that the group H is conjugate to a group of 
invertible integral matrices. This is true if and only if a 
weaker version of the Born rule holds, in which the 
lattice vectors in (3) are replaced by a suitable set of 
'sublattice vectors'. In this case, the twinning shears, 
each of which, as we know, separately restores a 
sublattice, do so for a suitable common sublattice, the 
same for all shears. To such a sublattice, (3) applies if a 
suitable set of sublattice vectors is used in place of the 
lattice vectors E a. This constitutes a weak version of the 
Born rule that can be utilized to obtain an elastic model 
for the behavior of the crystal by means of the same 
procedure. Also, in this case, it is possibleto bridge the 
continuum and the molecular descriptions and the 
energy-invariance group obtained from the molecular 
considerations describes well the crystalline properties 
of the material. 

(iv) If the group of rational matrices H is not 
conjugate to a group of integral matrices, the Born 
rule does not hold even in the weak sense. Although 

each twinning shear does restore a sublattice in 
mirror symmetry, they cannot do so for any 
common sublattice and it is not possible to follow 
the route to elasticity theory mentioned above. In 
this case, it is necessary to check whether elasticity 
can be applied at all to model the behavior of the 
material. 

4.3. Explicit conditions selecting the alternatives above 

In the case of two generic twin-connected 
reflections, there is a simple way to check which 
of the alternatives above holds for H. Since this 
case is enough to illustrate all the important 
conclusions, we give some details about it. It will 
turn out that the more interesting cases (ii) and (iii) 
above are very special ones and that ( i v ) i s  the 
generic one. If the twin-connected elements are H 1 
and n 2 ~ I-I 1 , given explicitly by 

I t l = l - a ® b ,  H E = l - c ® d w i t h a . b = 2 = c . d ,  

(16) 

the twinning subgroup H is, abstractly, a dihedral group 
that is finite or infinite depending on the period p of the 
element HtI-I 2 (whenp is finite, the number of elements 
of H is 2p). It turns out that p and the other interesting 
properties of H are determined by the value of the 'cross 
product' (b- c)(a- d) = t r H i H  2 + 1 ~ Q ( ~  denotes 
the field of rational numbers). Recall that (b.  c)(a. d) 
can be calculated by inspection through (14) and (15) 
from the experimental data on the elements K1 and 02 of 
the observed twins. 

Remark. Because the shear amplitude is small in 
experimentally observed twinning shears, for any twin- 
connected elements as in (16) the following is observed 
to hold: 

(b.  c)(a. d) = trH1H2 + 1 s [0, 4] (17) 

and we discuss the features of H under this assumption. 

Owing to the general properties of the trace of a 
matrix, it is clear that if either alternative (ii) or (iii) in 
~4.2 is to hold for H, the trace tr H1H 2 must be in 7/ 
rather than in Q (7/denotes the set of integral numbers): 

(b.  c)(a.  d) = t rHaH 2 + 1 ~ 7/; (18) 

in fact, this is also a sufficient condition for (ii) or (iii) to 
be true, for instance due to a result by Maxwell (1977). 
Fig. 1 illustrates two (two-dimensional) twinning modes 
verifying (18). This condition gives a quick criterion to 
check whether the Born rule applies, at least in the weak 
sense, for any couple of twinning modes of a material. 
Under (17), it can be also seen if (18) holds the group H 
is conjugate to one of the finite crystallographic groups, 
with 2, 4, 6, 8 or 12 elements. 

We only mention here that the problem is more 
complex when we consider more than two H's  (see 
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Vinberg, 1971, lemmas 11 mad 12, and Zanzotto, analysis of the experimental literature on mechanical 
1992). twinning. 

4.4. Elasticity theory cannot be used if the Born rule 
does not hold 

As we have seen, cases (ii) and (iii) in ~4.2 are 
decided on the basis of (18) and are favorable in the 
sense that elasticity theory can be applied. If (18) 
does not hold, which algebraically is the most likely 
case, then the group H is as in point (iv) of ~4.2. In 
other words, 'generically' the Born rule should not 
be expected to apply to twinning. In this case, an 
analysis of the features of the twinning group H 
shows that elasticity cannot provide an appropriate 
model: the energy invariance becomes too large for 
a crystal. 

This is a consequence of the fact that, if the parameter 
Ca. e)(a.  d) = t r H i H  2 + 1 is rational and between 0 
and 4 but not ifi 7/[i.e. if (17) holds but (18) does not], 
the element H1H 2 is always conjugate to a rotation and 
its period p is always infinite. Consequently, the 
topological closure of the subgroup C = {(H1H2) r, 
r ~ 7/} of H is a topological cyclic Lie group conjugate 
to a one-dimensional continuous group of rotations 
[one-parameter subgroup of the proper orthogonal 
group SO(3)]. This means that the material symmetry 
of an elastic crystal exhibiting two twinning modes is 
'generically' larger than transverse isotropy. 

If also the point-group symmetry of the crystal is 
taken into account, or if several twin-connected 
elements H are considered, it is not difficult to see 
that the situation gets even worse (Zanzotto, 1992). The 
one-parameter subgroups generated by aperiodic ele- 
ments such as the product HIH 2 and their crystal- 
lographic equivalent elements make the invariance 
group G a high-dimensional Lie subgroup of the eight- 
dimensional unimodular group. Thus, for crystals with 
large point groups, i.e. whose lattices have rather high 
geometrical symmetry like tetragonal and higher, 
generic experimental data giving even only one 
aperiodic product H1H 2 can be enough to force G to 
invade the whole unimodular group, which classically 
describes the material symmetry of elastic fluids 
(Truesdell & Noll, 1965). 

5. Some relevant experimental data 

Although the theoretical considerations predict that this 
should be a quite rare occurrence, the analysis of 
relevant experimental data indicates that the validity of 
the Born rule does occur in practice: shape-memory 
alloys and crystals whose structure is described by one 
simple Bravais lattice appear to share the very 
remarkable characteristic of nongeneric behavior in 
which the validity of the rule is not violated. This 
section summarizes some of the results of a careful 

5.1. Macroscopic shear data 

Only part of the abundantly reported experimental 
results is significant for our purposes because in order to 
establish the twin-connected elements H we need data 
regarding the actual macroscopic twinning shear; thus, 
the elements K 1 and 1/2 must be determined by means of 
macroscopic measurements. However, it is common in 
the experimental literature to obtain such data by means 
of geometric considerations when the macroscopic 
measurements are not precise enough. While the 
geometric estimates are certainly correct in many 
cases, even the most careful ones could sometimes be 
wrong and examples of this can be found in the 
literature. For this reason, we chose data on twinning 
that rely on direct macroscopic measurements for their 
determination. The cases of Rapperport (1959) and 
Reed-Hill (1960), for instance, are remarkable from this 
point of view in that the authors estimated the shear 
elements only by optical means. The case of Cahn 
(1953) seems more typical: a geometric analysis (based 
on an assumption of a reasonably 'small' amount of 
shear) allowed identification of some candidate macro- 
scopic shears, among which the choice of the correct 
one was made by means of macroscopic measurements. 

5.2. Some h.c.p, metals 

Magnesium shares, with a number of other h.c.p. 
metals (see, for instance, Barrett & Massalski, 1966, p. 
415; Klassen-Nekliudova, 1964, p. 168; Kelly & 
Groves, 1970, p. 303; Yoo, 1981), a twinning mode 
that gives the element H 1 below. Among the other data 
on twinning modes in magnesium, those collected by 
Reed-Hill (1960) are now commonly accepted in the 
literature (see also Reed-Hill & Robertson, 1963). All 
in all, these results give, by (14) and (15), the following 
H's: 

H 1 : 1 - ½ (2E 1 + E 2 -t- E3) @ (E 1 -]- 2E3), 

H2 : 1 - ] (6E 1 + 3E2 + 2E3) ® (El _q_ E3), 

H 3 : 1 - 1 (2E1 + E2 -t- 2E3) ® (El -b 3E3), 

(19) 

where the usual lattice vectors for hexagonal crystals 
are used.* Very interesting experimental data are also 
available for zirconium, which besides the common 
mode of h.c.p, metals connected with H 1 also exhibits 
three other mechanical twins. These yield 

* For hexagonal lattices, the use of the four-index notation is rather 
common. However, in this section we use a three-index notation, 
referring for further information and transformation formulae to Otte 
& Crocker (1965). 



H 1  ~ l - -  

H 2 - -  1 - 

H 3 = 1 - 

H 4 = l -  

GIOVANNI ZANZOTTO 

1 (2E1 + E2 -4- E3) @ (El ..]_ 2E3), 

(2E: + 2E 2 + E3) ® (El .4_ E 2 + 2E3), 

2 (8El + 8E 2 + E3 ) ® (El + E 2 + E3), 

(El + w2) ® (E~ + v? + E3). 

(20) 

The first three H's  are obtained from data by 
Rapperport (1959), while the mode connected with 
H 4 was subsequently determined by Reed-Hill, 
Slippy & Buteau (1963). All of the data utilized in 
(20) were obtained by means of purely macroscopic 
measurements. 

For both magnesium and zirconium, the twin- 
connected H's  and the reflections in the point group of 
the crystal violate (18) in pairs, so that the discussion in 
~4.4 applies. Even in the weak sense, the Born rule does 
not apply and their twinning groups are generic. 
Twinning makes their energy invariance much too 
large for thermoelasticity theory to give a useful 
description of their behavior as crystalline materials. 

The conclusions above regarding zirconium and 
magnesium are likely to apply to titanium as well, 
which has the same h.c.p, structure and exhibits, among 
others, the same twinning planes as both zirconium and 
magnesium. However, regarding titanium, only geo- 
metric determinations of the shear elements other than 
K: appear to be available in the literature, with the 
exception of very few partial studies (see, for instance, 
Paton & Backofen, 1969). The foregoing analysis 
confirms the statement by Kelly & Groves (1970, p. 
300): 'It will be evident that physically, twinning in 
hexagonal metals is not well understood.' 

5.3. Uranium 

Situations similar to that of the h.c.p, metals occur 
also in the case of lower-symmetry metals. A clear 
example is given by orthorhombic uranium, for which 
some interesting data are available. The experimental 

• literature reports five twinning modes, two of which are 
conjugate (see Cahn, 1953; Lloyd & Chiswik, 1955; 
Daniel, Lesage & Lacombe, 1971; Crocker, 1965). 
These modes are now well accepted in the literature (see 
Klassen-Nekliudova, 1964, p. 168; Barrett & Mas- 
salski, 1966, p. 415; Kelly & Groves, 1970, p. 303). 
Explicitly, the elements H we obtain from (14) and (15) 
are 

(21) 

H 1 = 1 - ½ (El + E2) ® (El + 3E2), 

H 2 = 1 - 1(3E1 + E2 + 2E3) ® (El _at_ E2 + 2E3), 

H 3 = 1 - ½ (3E 1 + E 2 + E3) @ (El + 2E 2 + E3), 

H4 = 1 - ¼ (5E l + E 2 + 2E3) ® (El + E 2 + E3), 

in terms of orthorhombic lattice vectors. In this case, 
too, the elements H above and the reflections in the 
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point group of the crystal violate (18) in pairs, so that 
the discussion in ~4.4 applies and the conclusions are the 
same as for the h.c.p, metals. 

5.4. Fe-Ni-C martensites 

The properties of the deformation modes of various 
ferrous martensites as a function of their carbon content 
and in a range of conditions allowing for the stability, or 
at least metastability, of both the austenitic and the 
martensitic phases, have been investigated by a number 
of workers. Twinning data, clear enough for our 
purposes, are reported, for instance, by Richman 
(1963) (see also Crocker & Bevis, 1963). A kinematical 
discussion and reappraisal of the above results was 
made by Bevis, Rowlands & Acton (1968). Rowlands, 
Fearon & Bevis (1968), after further experimental study 
of twinning in several Fe-Ni and Fe-Ni-C martensites, 
reported, in addition to the former ones, a further (type 
2) mode to be active, the geometrical appraisal of whose 
elements was found to be in excellent agreement with 
experimental data. Taking into account only the three 
most certain and frequent modes, we get from (14) and 
(15) the following H's: 

H 1 1 1 (El E 2 = _ : (El + E2 + E3) ® + + 2E3), 

H 2 1 1 _____ __ ~ ( _ E l  + E2 + E3 ) @ (E2 + 3E3) ,  (22) 

H 3 ---- 1 - 1 (5E1 + E2 _ 3E3) @ (El _ E 3) 

in terms of tetragonal lattice vectors. We notice that HI 
is associated with the common well established (1, 1,2) 
mode of b.c.c, materials. Again, it is not difficult to 
check that, if we consider the above elements H and the 
reflections that belong to the point group of the crystal, 
they violate (18) in pairs, so that the resulting energy 
invariance prevents the adoption of an elastic model. 

5.5. Shape-memory alloys 

As an example of these materials, we examine the 
deformation twinning modes reported by Ichinose, 
Funatsu & Otsuka (1985) for orthorhombic ~ marten- 
site in a Cu-AI-Ni alloy. The twinning elements were 
all experimentally determined by means of a macro- 
scopic analysis of various single-crystal specimens after 
transformation from cubic austenite. The skeletal lattice 
of the crystalline multilattice of the martensite is 
generated by orthorhombic vectors. Observations led 
to three twinning modes (two of which are 'reciprocal' 
and give the same H); these modes, on the basis of (14) 
and (15), yield the following two twin-connected H's: 

H 4 1 1 ( E  1 - -  _ ~ ( E l  a t- E 2 + E3)  ® + 2E 2 + E3) ,  

H5 = 1 - (E 1 + E3) ® (El + E3). (23) 

If to the above generalization reflections we adjoin 

Hi = 1 - 2Ei ® E i (i = 1, 2, 3), (24) 
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which are the reflections generating the point group of 
the orthorhombic martensitic phase, it can be seen that, 
for the five H ' s  in (23) and (24), condition (18) is 
always satisfied and that they generate a group 
conjugate to the cubic holohedral crystallographic 
group. The latter is the symmetry group of the higher- 
symmetry phase of this material. 

The other shape-memory alloys that we checked 
behaved similarly to Cu-AI-Ni,  at least near their 
symmetry-breaking phase transitions; their twinning 
groups always coincide with the point groups of the 
higher-symmetry phase. 

5.6. Simple lattices 

Crystals whose structure can be described by one 
simple (monoatomic) Bravais lattice appear always to 
behave in such a way that the Born rule (3) holds 
stricto sensu. We refer to Zanzotto (1988) for more 
details, who could not find any data in the literature 
regarding twinning or other deformations violating 
(3) in such materials, for whose behavior elasticity 
theory thus provides a good model. Unlike the case 
of shape-memory alloys, the twinning subgroups of 
these crystals are infinite discrete groups. This is 
what happens, for instance, with the very common 
(1,1,2)  twinning mode in b.c.c, materials (see 
Klassen-Nekliudova, 1964; Kelly & Groves, 1970; 
and the Fe-Ni -C martensites above) or with the 
well established ' ( - 1 , - 3 , 5 ) '  type 2 twinning mode 
in crystalline mercury (see Crocker, Heckscher, 
Bevis & Guyoncourt, 1966; Guyoncourt & Crocker, 
1968). 
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